
PIMFlow: Compiler and Runtime Support for
CNN Models on Processing-in-Memory DRAM
Yongwon Shin∗

ywshin@postech.ac.kr
Graduate School of AI

POSTECH
South Korea

Juseong Park∗
wntjd9805@postech.ac.kr
Dept. of Computer Science

and Engineering
POSTECH
South Korea

Sungjun Cho
allencho1222@postech.ac.kr
Dept. of Computer Science

and Engineering
POSTECH
South Korea

Hyojin Sung†
hsung@postech.ac.kr
Graduate School of AI

POSTECH
South Korea

Abstract
Processing-in-Memory (PIM) has evolved over decades into a
feasible solution to addressing the exacerbating performance
bottleneck with main memory by placing computational
logic in or near memory. Recent proposals from DRAM man-
ufacturers highlighted the HW constraint-aware design of
PIM-enabled DRAM with specialized MAC logic, providing
an order of magnitude speedup for memory-intensive opera-
tions in DLmodels. Although themain target for PIM acceler-
ation did not initially include convolutional neural networks
due to their high compute intensity, recent CNN models
are increasingly adopting computationally lightweight im-
plementation. Motivated by the potential for the software
stack to enable CNN models on DRAM-PIM hardware with-
out invasive changes, we propose PIMFlow, an end-to-end
compiler and runtime support, to accelerate CNN models
on a PIM-enabled GPU memory. PIMFlow transforms model
graphs to create inter-node parallelism across GPU and PIM,
explores possible task- and data-parallel execution scenarios
for optimal execution time, and provides a code-generating
back-end and execution engine for DRAM-PIM. PIMFlow
achieves up to 82% end-to-end speedup and reduces energy
consumption by 26% on average for CNN model inferences.

CCS Concepts: • Software and its engineering→ Com-
pilers; • Hardware→ Emerging architectures.

Keywords: Processing-in-memory, CNN models
ACM Reference Format:
Yongwon Shin, Juseong Park, Sungjun Cho, and Hyojin Sung. 2023.
PIMFlow: Compiler and Runtime Support for CNN Models on
Processing-in-Memory DRAM. In Proceedings of the 21st ACM/IEEE

∗Both authors contributed equally to this research.
†Also with POSTECH, Dept. of Computer Science and Engineering.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0101-6/23/02.
https://doi.org/10.1145/3579990.3580009

International Symposium on Code Generation and Optimization (CGO
’23), February 25 – March 1, 2023, Montréal, QC, Canada. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3579990.3580009

1 Introduction
Themain memory has become an increasingly critical perfor-
mance and energy bottleneck in modern computing systems,
as the performance gap between compute units and memo-
ries widens [9, 10] and the demand for efficient large-scale
data processing grows. Among many architectural efforts
to address this “memory wall” [5, 6, 24, 36], processing-in-
memory (PIM) places computational logic in or near memory
devices to perform in-memory operations, thus effectively
eliminating the data movement overhead for PIM-offloaded
computations [3, 15, 23, 26, 27, 37, 38, 45].
While the idea of PIM is not new [17, 18, 42], recent

advances in memory technologies motivated major DRAM
manufacturers to explore its potential as a commercial
DRAM solution [26, 37, 38]. These efforts discovered that the
area and power constraints on the number and complexity
of PIM compute units are much more stringent than those
assumed by previous PIM approaches, and focused on
integrating multiply-accumulate (MAC) units in the logic
layer of 3D-stacked memory [37], or after bit-line sense
amplifier (BLSA) [26] while meeting fab-level energy and
area constraints. The resulting “DRAM-PIM” achieved an
order of magnitude acceleration for memory-intensive
fully-connected (FC) layers in various DNN models.
On the other hand, convolutional layers, one of the two

major building blocks of DNN models along with FC layers,
were not considered main targets for PIM due to their high
computational intensity and data reuse, with little prospect
for PIM logic with limited computational power to beat mas-
sively parallel GPUs. Nevertheless, we see a strong potential
for PIM acceleration with a type of separable convolutional
layers, e.g., pointwise or 1x1 convolutional layers. As shown
in Fig. 1, these layers have relatively low arithmetic inten-
sity as they are equivalent to FC layers after convolution
lowering, and are increasingly used in modern CNN models
to reduce dimensionality (ResNet50 [25]) or combine with
depthwise (DW) separable layers to replace regular convo-
lutional layers to reduce computation load while retaining
accuracy (EfficientNetB0 [57] and MobileNetV2 [51]).

249

https://doi.org/10.1145/3579990.3580009
https://doi.org/10.1145/3579990.3580009
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579990.3580009&domain=pdf&date_stamp=2023-02-22

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Yongwon Shin, Juseong Park, Sungjun Cho, and Hyojin Sung

0%

50%

100%

ENetB0 MBNetV2 ResNet50

conv 1x1 DW SE Residual FC Others

0
50

100
150
200
250
300
350

3x
3 x1 x1 3x
3 x1 x1 x1 x1 x1 x1 x1 D

W 3x
3

D
W

D
W

ar
ith

m
et

ic
 in

te
ns

ity

convolution layers

3x3 7x7 1x1 DW

Figure 1. Runtime breakdown of CNN models on NVIDIA RTX
2080 Ti GPU (left) and arithmetic intensity (# of MAC divided by #
of LD/ST) of convolutional layers in the models (right).

Taking a step forward, we envision a holistic deep learning
(DL) software stack for DRAM-PIMwith optimizing compiler
and runtime support. Prior work on software support for
PIM focused mainly on providing user interfaces to explicitly
specify and schedule PIM-offloadable code regions [27, 33],
while recent proposals include more sophisticated placement
and scheduling mechanisms with cost models [22, 58] and
GPU-PIM parallel execution support [48]. Our key insight
is that compilers can exploit PIM-offloading opportunities
inherent in input DL models, but also can systematically
create them by transforming model graphs so that they have
more nodes to accelerate on PIM and overlap execution with
GPU. This will significantly extend the scope of PIM tar-
get software and improve PIM utilization. Automating the
offloading process can be challenging due to the complex-
ity of code generation, but we observed that configuring
the DRAM-PIM as both GPU memory and PIM device can
simplify the task.
Thus, we propose PIMFlow, a compiler and runtime so-

lution that accelerates CNN models on a PIM-enabled GPU
memory based on [26], with PIM-aware graph transforma-
tions and PIM command generation support. PIMFlow takes
model inference graphs from DL frameworks as input and
searches the space of possible placement and scheduling
options for convolution layers. PIMFlow supports multiple
mixed-parallel execution models, where a convolution layer
can be distributed across GPU and DRAM-PIM (multi-device
data parallel) or multiple convolution layers partially over-
lap execution (pipelined), in addition to traditional device
offloading (heterogeneous parallel). The search result is used
to transform the graphs accordingly, which are then com-
piled and executed by our TVM back-end for DRAM-PIM.
In the DRAM-PIM back-end, PIMFlow performs a mem-

ory layout optimization to minimize data movement over-
heads introduced by parallelization, and optimizes DRAM-
PIM code generation for more efficient command sequences.
PIMFlow can also be viewed as an SW/HW co-design ef-
fort; our target DRAM-PIM architecture is extended with
new DRAM-PIM commands to allow more fine-grained data
reuse specifically needed to efficiently handle convolutional
layer matrices, and the code generator supports them. Our
experimental results showed up to 82% and 33% (34% and 23%,
on average) speedup for all evaluated CNN models against
the GPU and DRAM-PIM baselines without PIMFlow, re-
spectively. The reduced execution time led to lower energy

consumption by 26% on average against the GPU baseline.
The contributions of the paper are as follows:
• We systematically analyze performance trends of convolu-
tion layers on the DRAM-PIM hardware, and define the
PIMFlow execution model accordingly. To our knowledge,
this paper concerns the first effort to expand the scope of
PIM-offloadable computations and increase PIM utiliza-
tion by transforming computations to exploit GPU-PIM
mixed-parallel execution.
• We propose an end-to-end compiler and runtime solution
that enables all types of convolution layers on DRAM-
PIM. The resulting PIMFlow provides up to 82% speedup
over GPU for evaluated CNN models, showing the strong
potential for PIMFlow as an optimizing compiler toolchain
for industrial DRAM-PIM.
• We extend the DRAM-PIM memory architecture to reduce
PIM command latencies, support convolution more effi-
ciently, and facilitate mixed-parallel execution across GPU
and DRAM-PIM.
In the rest of the paper, we first provide background in-

formation for DRAM-PIM architectures and convolution op-
eration. Section 3 describes our preliminary analysis, which
motivates the design and implementation of PIMFlow in
Section 4. Section 5 and 6 show the experimental result for
PIMFlow with several CNN models. Section 7 discusses the
overheads incurred by PIMFlow implementation. Section 8
presents related work, and Section 9 concludes the paper.

2 Background
2.1 Digital DRAM-PIM Architecture
We assume Newton and its sister architecture [26, 38] as our
baseline PIM-enabled DRAM. They present a DRAM manu-
facturer’s constraint-aware design for commercially viable
DRAM-PIM. Newton defines its target operation as memory-
bound matrix-vector multiplication of one large operand
with low data reuse and one small operand possibly with
high data reuse. Fig. 2 shows a structural overview of the ar-
chitecture on the right. With the large operand in a memory
cell array (1) and the small operand in a global buffer per
memory channel (2), Newton performs bank-level parallel
matrix-vector multiplication of these two operands using
MAC units placed after BLSA. MAC logic consists of the
reduction tree after column I/O (3), where fetched matrices
are multiplied with input data in the global buffer and then
summed up, and the result latches (4) to accumulate MAC
results. Other operations (e.g., element-wise operations) are
not supported. Although Newton features a small number of
compute units (16 multipliers and a reduction tree per bank)
compared to previous digital DRAM-PIM approaches [15],
it produces approximately 20x speedup for memory-bound
DL models such as BERT [16] and recommendation models
(DLRM) [44], showing the feasibility of commercial DRAM-
PIM.

250

PIMFlow: Compiler and Runtime Support for CNN Models on Processing-in-Memory... CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

⊙

H
W

Ic

Input tensor

kwkh

Ic

×
Oc

Filters
×(H ⋅ W)

×

kh ⋅ kw ⋅ Ic

Oc

16×512

(2
) G

lo
ba

l B
uf

fe
r

(1) Memory Cell Array

0 1 … 15 0 1 … 15 0 1 … 15

32:1 Column MUX

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(4)Result

BLSA (1KB è 512 FP16)

Column IO (32B è 16 FP16)

Bank 1 GB

BK 3

BK I/O
PU

BK 4

BK I/O
PU

BK 2

BK I/O
PU

BK 1

BK I/O
PU

Local IO BUS
Global IO BUS

N_GW reg

51
2×

1

(3) Reduction Tree

Convolution Lowering DRAM-PIM Mapping
Figure 2. Convolution lowering and mapping to the baseline DRAM-PIM architecture [26].

2.2 Convolution Operation and Implementation
Convolutional neural networks (CNN) are widely used in
various vision and graphics tasks such as image classification,
object detection, and image/video segmentation [25, 28, 49,
50]. CNN stacks multiple convolutional (CONV) layers to ex-
tract image features. Shallow stacks detect simple geometric
shapes like edges, while deeper stacks extract more complex
and higher-level features. Convolution operation works by
sliding “filters” across spatial dimensions (width and height)
of input images and computing output values as the dot
product between the filter and input element. There exist
many convolution algorithms optimized for specific data
shapes and hardware [7, 19, 35], and “convolution lowering,”
which implements convolution as matrix-matrix multiplica-
tion of rearranged image and filter matrices, is widely used
for data-parallel accelerators [13].

To map CONV layers to the DRAM-PIM hardware, we ap-
ply convolution lowering first and iteratively performmatrix-
vector multiplications. For example, as shown in Fig. 2, after
convolution lowering, convolution becomes the multiplica-
tion of input tensor (green) and filter weight (blue) matrices.
To map the input tensor to the DRAM-PIM global buffer, the
input tensor matrix is broken down into multiple vectors.
Similar to the tiling approach in [26], we place the filters in
the memory cell array in advance, and then fetch the input
tensor from GPU memory to the global buffer and activate
the PIM compute unit. We assume the NHWC, i.e., channels-
last, format for input data layout as it guarantees contiguous
memory access in the channel dimension.

3 Preliminary Analysis
Prior work on software support for DL models on DRAM-
PIM assumed the default heterogeneous parallelism, where a
host CPU schedules computational graph nodes on the host
or device(s) (including GPU and PIM) and serially launches
each node in a graph traversal order that is then executed, ex-
ploiting data parallelism within the node. While PIM can pro-
vide significant runtime acceleration for memory-intensive
operations in this mode of parallelism [3, 27, 48], support
for both intra- and inter-node parallelism across multiple
devices could bring out additional speedup for a wider range
of computations, and recent research explored its poten-
tial [21, 47]. Thus, we conducted a preliminary analysis of

how convolution layers perform on GPU-PIM systems with
varying configurations to examine the prospect of the per-
formance gain from parallelizing them across devices and
guide our compiler and architecture design in Section 4.
1. The majority of DNN inference models including CNN
do not have enough inherent inter-node parallelism to
fully utilize PIM units in parallel with GPU.Many DNN
models are known to not offer much inter-node parallelism
since data simply flow through a straight-lined sequence of
layers without branches. We found that zero or less than
17% of the graph nodes have nodes without data-flow depen-
dency in 75% of the Torchvision [40] CNN models. Enabling
independent nodes to execute in parallel on GPU and PIM
introduces software complexity to solve the placement and
scheduling problems with some form of GPU and PIM per-
formance models. It would be challenging to achieve a mean-
ingful parallelization speedup and justify the complexity if
target graphs had few independent nodes.
2. The PIM performance of many convolutional layers
does not dominate the GPU performance, and vice versa;
parallelization across GPU and PIM can further reduce
the critical execution path. Even in graphs with little inter-
node parallelism, each node has abundant intra-node data
parallelism over input or output tensors. GPU and PIM are
specifically designed to exploit such data parallelism to accel-
erate compute-intensive and memory-intensive operations,
respectively. For example, memory-intensive FC layers are
an order of magnitude faster on PIM than on GPU [26, 37, 38],
while CONV layers often fully utilize GPU cores with cached
activations and filters. However, for layers with moderate
data reuse and arithmetic intensity, e.g., pointwise CONV
layers with deep input/output channels, neither hardware
outperforms the other by a crushing margin, i.e., PIM and
GPU performance are within a close range. Thus, support-
ing mixed-parallel execution, i.e., task-parallelism for data-
parallel kernels, can achieve a further speedup by overlap-
ping the execution of GPU and PIM kernels.
3. GPU memory can be configured to act as both a reg-
ular DRAM and a PIM device to minimize data move-
ment overheads for inter-node parallel execution while
maintaining GPU kernel performance. Inter-node paral-
lel execution introduces synchronization and data movement
overheads between devices. If devices connected through

251

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Yongwon Shin, Juseong Park, Sungjun Cho, and Hyojin Sung

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

ru
nt

im
e

number of channels

ENetB0 MBNetV2 ResNet50 VGG16

Figure 3.Model inference time on GPU with different number of
memory channels, normalized to runtime on GPU with 24 memory
channels.

PCIe operate independently, communication overheads can
easily offset performance gain from computation acceler-
ation. However, if a part of GPU memory is enabled with
PIM compute units, a GPU kernel can run in parallel with a
PIM kernel sharing the same physical memory and moving
data only between channels. This configuration also sim-
plifies PIM command generation as it does not require a
separate device driver for address mapping. Dedicating a
subset of channels to PIM could slow down GPU kernels
compared to when all channels are accessible to GPU, but
our preliminary experiments showed that compute-intensive
models are not noticeably impacted, even when the num-
ber of memory channels is halved (Fig. 3), due to its high
computation-communication ratio. By offloading memory-
intensive layers to PIM-enabled channels, this GPU-PIM dual
configuration can achieve PIM acceleration without sacrific-
ing GPU performance and increasing DRAM size.

4 Design and Implementation
Guided by the motivating observations in the previous sec-
tion, we propose PIMFlow, compiler and runtime mecha-
nisms that enable mixed-parallel GPU-PIM acceleration for
CNNmodels. We also introduce a PIM-enabled GPUmemory
architecture based on [26].

4.1 PIM-Enabled GPU Memory
We extended the DRAM-PIM architecture in prior work [26,
38] to support GPU-PIM parallel execution with minimal
overheads and optimize PIM operation latencies.
GPU/PIM memory channel grouping. In order to efficient-
ly execute GPU and PIM workloads on a single memory,
independently and in parallel while minimizing software
changes, we configure a single DRAM to serve as both GPU
memory and PIM device by dividing the memory channels
into two contiguous sets: regular channels for GPU data and
PIM-enabled channels. There is a trade-off between perfor-
mance and area/power with regard to the number of PIM-
enabled channels in the memory. Having all channels PIM-
capable will maximize the PIM computing power, but the
added complexity with area and power overheads is hard to
justify as many GPU kernels with unsupported operations
on PIM cannot use PIM features at all. Thus, we augment
only a subset of memory channels with PIM hardware so
that we can achieve close-to-ideal PIM acceleration while

Host

Core

Main
Memory

GPU
L2 Cache

Global Memory

ch1
ch2
ch3
ch4

ch5
ch6
ch7
ch8

ch9
ch10
ch11
ch12

ch13
ch14
ch15
ch16

GPU Memory Channel
ch1
ch2
ch3
ch4

ch5
ch6
ch7
ch8

ch9
ch10
ch11
ch12

ch13
ch14
ch15
ch16

PIM Memory Channel

①Launch
GPU kernel ②Transfer input data

③Move PIM result
④Copy result

PCIe

Crossbar

SM SM SM SM SM SM

Figure 4. PIM-enabled GPU memory architecture with data move-
ment.

minimizing underutilized PIM resources.
For GPU kernels that do not issue DRAM-PIM commands,

the memory behaves the same way as traditional GPU mem-
ories. When GPU kernels activate PIM units, offloaded data
are mapped to the PIM-enabled memory channels and then
used as operands for PIM compute units. The memory con-
troller of the PIM-enabled DRAM is updated to place data
in the proper channels and move them between the chan-
nels, if needed. Fig. 4 shows how data is transferred between
the host memory and distinct sets of channels in the PIM-
enabled GPU memory. The data is initially transferred from
the host memory to the GPU memory channels. When GPU
and PIM kernels are launched to execute in parallel (1), data
is moved to the PIM channels before PIM kernels execute (2).
Once a PIM kernel finishes its execution, data is transferred
back to the host memory for CPU kernels (3) (e.g., activation
functions following FC or CONV layers) or back to GPU
memory if the data is requested by another kernel (4). We
assume all GPU and PIM memory channels are connected
to each other forming memory networks [33], since direct
memory interconnect incurs much less contention than the
GPU L2 cache crossbar, as shown in [63].
PIM command and global buffer extension. The DRAM-
PIM hardware supports a set of PIM commands to move
data for PIM compute units and activate them; GWRITE and
READRES commands push input data to the global buffer and
read out computed results respectively, while COMP triggers
PIM computation and G_ACT activates multiple banks. These
commands are usually issued in the following order: GWRITE-
G_ACT-COMP-READRES. We extended the GWRITE command as
follows to accelerate CONV operations on PIM more effi-
ciently, while reusing the command semantics as described
in [26] for the rest:
• Multiple global buffers: We observed that CONV filters are
often lowered into small matrices that cannot fully utilize
PIM units. As G_ACT fetches the same filter elements from
memory to be multiplied by data brought in by different
GWRITE commands, we use four global buffers instead of
one [26] or two [38] to reuse G_ACTs for higher PIM utiliza-
tion and data reuse (the command reuse optimization is
implemented in the DRAM-PIM back-end). We also added
GWRITE_2 and GWRITE_4 commands to access two or four
global buffers with a single PIM command.

252

PIMFlow: Compiler and Runtime Support for CNN Models on Processing-in-Memory... CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

GPU

ONNX
Graph

1

3

2

4

PIM-Aware Graph Transformation TVM DRAM-PIM back-end
PIM code generator

Execution Mode and Task Size Search

O
N

N
X

to
 R

el
ay

GWRITE
GWRITE
G_ACT
COMP
COMP
READRES
COMP
COMP
READRES

TVM Runtime

Memory Optimizer

Kernel Sequence
Generation Ex

ec
ut

io
n

En
gi

ne

H
ar

dw
ar

e
M

ea
su

re
m

en
t

Search Space Execution Result

Multi-device
parallelization pass

Spliting Ratio

1

3
4

2🄑🄑2🄐🄐
concat

Pipelining pass

3🄑🄑3🄐🄐
concat

4🄑🄑4🄐🄐
concat

Pipeline Candidate

1
2🄑🄑2🄐🄐

concat
1

2
🄐🄐

2
🄑🄑

3
🄑🄑

3
🄐🄐

4
🄑🄑

Task-level parallel execution

4
🄐🄐PIM

Figure 5. The overview of PIMFlow.

• Strided GWRITE: We extend GWRITE to accept three addi-
tional arguments so that input tensor elements in non-
contiguous memory addresses can be pushed into the
global buffer with a single GWRITE command. This com-
mand helps simplify PIM command sequences to compute
non-pointwise CONV layers.
• GWRITE latency hiding: We hide GWRITE latency by asyn-
chronously issuing a following G_ACT command, which
significantly reduces PIM cycles. These commands cannot
be activated simultaneously when all memory channels
are involved in data fetch as in [26], but in our DRAM-PIM
architecture with separate GPU and PIM memory chan-
nels, data can be fetched from GPU channels while PIM
channels activate memory rows.

4.2 PIMFlow Compiler and Runtime Support
PIMFlow is implemented as a compiler and runtime exten-
sion in DL frameworks, and consists of three main compo-
nents as shown in Fig. 5. PIM-aware graph transforma-
tions identify candidate ONNX graph nodes for PIM acceler-
ation, determine the execution mode, e.g., full/no offloading,
multi-device data-parallel, or pipeline-parallel, and trans-
form them accordingly. We use the execution mode and
task size search engine to search for the optimal execution
mode for each node. The resulting ONNX graphs are com-
piled and executed by the TVM back-end for DRAM-PIM.
This includes memory and command optimization passes
to reduce data communication overheads and improve PIM
utilization, as well as a PIM command generation pass.

4.2.1 PIM-aware Graph Transformations. We extend
the current heterogeneous-parallel execution model in DL
frameworks to execute independent graph nodes in parallel
on GPU and DRAM-PIM. We support the following mixed-
parallel execution modes.
• Multi-Device Data-Parallel (MD-DP) execution: GPU
and PIM kernels execute the same task but with a disjoint
portion of input data. Each kernel exploits internal data-
parallelism.
• Pipelined execution: GPU and PIM kernels with data
dependency overlap the execution of their pipeline stages
across GPU and PIM. Each pipeline stage kernel exploits
internal data-parallelism.
PIMFlow implements two ONNX graph transformation

passes that create inter-node parallelism to activate the
mixed-parallel execution modes (Fig. 5). For both passes,
we assume the PIM candidate nodes to be FC and CONV
layers (except for DW CONV), while all the other layers
are GPU-executable only. These passes work with the code
generator and the execution engine so that proper GPU and
DRAM-PIM kernel codes are generated and scheduled to
execute in parallel while respecting data dependency.
Multi-device parallelization pass. This pass splits a single
PIM-candidate node into two nodes to activate the MD-DP
execution mode. For example, node 2 in Fig. 5 is split into
2(A) and 2(B), connected to the producer node of 2. The
input data flowing into 2 is sliced into two subsets, each of
which becomes input data for 2(A) and 2(B). Lastly, the
output data of 2(A) and 2(B) are concatenated to produce
a single output tensor equivalent to the original output of 2.
Pipelining pass. This pass takes a subgraph of two or
more consecutive nodes and splits each node into multiple
pipeline stage nodes to generate inter-node parallelism
between pipeline stage nodes processing different data. In
Fig. 5, nodes 3 and 4 are pipelined with two pipeline stages.
Node 3(A) and 4(B) are prologue and epilogue nodes,
which can be executed on GPU or DRAM-PIM, while 3(B)
and 4(A) are executed in parallel. The “concat” node before
4(B) is inserted to enforce data dependency for boundary
elements from 3(A) when filters are bigger than 1x1. Finally,
the outputs of 4(A) and 4(B) are concatenated to produce
the subgraph output.

4.2.2 Execution Mode and Task Size Search. PIMFlow
performs a hardware-measurement-based search prior to
model compilation to determine which execution mode and
task splitting ratio to use for each node in the input graph.
To model node performance in the MD-DP mode, PIMFlow
generates and profiles samples with different GPU-PIM task
splitting ratios (at an interval of 10%) for each PIM-candidate
layer (FC and CONV). Thus, the search generates 11 samples
for each target layer, including 0/100 and 100/0 ratios for full
GPU and DRAM-PIM execution, respectively. PIMFlow uses
the multi-device parallelization pass to generate samples
with splitting ratios between 10/90 and 90/10, while using
the original graph for full GPU or PIM execution.1

1More fine-grained samples with 2% ratio intervals provided a 1.13% speedup
for EfficientNetB0, so we use 10% ratio intervals for simulation efficiency.

253

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Yongwon Shin, Juseong Park, Sungjun Cho, and Hyojin Sung

Algorithm 1 Execution Mode and Task Size Search
Require: Graph G
Ensure: Nodes in graph G are topologically sorted
1: function optimal_split(𝐺 , 𝑛𝑜𝑑𝑒 ,𝑇)
2: 𝑏𝑒𝑠𝑡_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 ←∞
3: for ratio for every 10% do
4: 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 ← 𝑑𝑜_𝑠𝑝𝑙𝑖𝑡 (𝐺,𝑛𝑜𝑑𝑒, 𝑟𝑎𝑡𝑖𝑜)
5: if 𝑏𝑒𝑠𝑡_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 > 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 then
6: 𝑏𝑒𝑠𝑡_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 ← 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

7: 𝑇 [𝑛𝑜𝑑𝑒.𝑖𝑛𝑑𝑒𝑥] [1] ← 𝑏𝑒𝑠𝑡_𝑟𝑢𝑛𝑡𝑖𝑚𝑒

8: function pipeline(𝐺 , 𝑛𝑜𝑑𝑒 ,𝑇)
9: 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 ← 𝑠𝑘𝑖𝑝_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝐺,𝑛𝑜𝑑𝑒)
10: 𝑙 ← 2
11: while 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒.𝑜𝑝_𝑡𝑦𝑝𝑒 = Conv do
12: 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 ← 𝑑𝑜_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 (𝐺,𝑛𝑜𝑑𝑒, 𝑙)
13: 𝑇 [𝑛𝑜𝑑𝑒.𝑖𝑛𝑑𝑒𝑥] [𝑙] ← 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

14: 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 ← 𝑠𝑘𝑖𝑝_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝐺,𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒)
15: 𝑙 ← 𝑙 + 1
16: function execution_mode_search(𝐺)
17: 𝑁 ← 𝐺.𝑠𝑖𝑧𝑒 () ⊲ The number of nodes in the𝐺
18: 𝑇 ←𝑚𝑎𝑝 [𝑁] [𝑁] ⊲ Allocate table𝑇
19: for 𝑛𝑜𝑑𝑒 in𝐺 do
20: if 𝑛𝑜𝑑𝑒.𝑜𝑝_𝑡𝑦𝑝𝑒 = Conv then
21: optimal_split(𝐺 , 𝑛𝑜𝑑𝑒 ,𝑇)
22: pipeline(𝐺 , 𝑛𝑜𝑑𝑒 ,𝑇)
23: for 𝑙 ← 1 to 𝑁 do ⊲ Solve by dynamic programming
24: for 𝑖 ← 1 to 𝑁 do
25: for 𝑘 ← 1 to 𝑙 − 1 do
26: if 𝑖 + 𝑘 > 𝑁 then
27: continue
28: 𝑇 [𝑖] [𝑙] ← min(𝑇 [𝑖] [𝑙],𝑇 [𝑖] [𝑘] +𝑇 [𝑖 + 𝑘] [𝑙 − 𝑘])
29: return𝑇 [1] [𝑁]

PIMFlow also recursively traverses the model graph to
identify all pipelining candidate subgraphs and executes the
pipelining pass in Section 4.2.1 to transform them.We extract
promising subgraphs with a PIM-candidate node followed or
preceded by a non-PIM node (unsupported operator) from
the graph. Subgraphs with non-PIM nodes that are compu-
tationally very lightweight, e.g., element-wise multiplica-
tion/addition and max pooling, compared to CONV and FC
layers, or that have a data-flow dependency with multiple
nodes that make pipelining impossible or very complicated,
are excluded from candidates, since the cost of pipelining
in these cases is likely to exceed the potential performance
gain. We analyzed the model architectures of CNN models
and identified a sequence of 1x1 and DW CONV layers as
a frequent and promising subgraph pattern. These layers
often follow each other and have similar arithmetic intensity,
but DW CONV layers are only executed on GPU because
it is not straightforward to offload DW CONV to current
DRAM-PIM as it requires the global buffer to be flushed for
each input channel.
Algorithm 1 illustrates the overall search process. The

algorithm searches for optimal runtime at 10% ratio intervals
(lines 3-6), and measures all pipelining candidates starting
from each node and expanding subgraphs one by one (lines
11-15). The above search results are recorded in 𝑇 (lines
21-22), and we compute an optimal solution with dynamic
programming (lines 23-28).

Increase Parallelism

GWRITE
G_ACT
COMP
COMP
READRES
COMP
COMP
READRES
G_ACT
COMP
COMP
READRES
COMP
COMP
READRES

GWRITE
G_ACT
COMP
READRES

GWRITE
...

GWRITE
...

GWRITE
...

GWRITE
G_ACT
COMP
COMP
READRES
GWRITE
G_ACT
COMP
COMP
READRES

GWRITE
G_ACT
COMP
COMP
READRES

ch0

ch2

ch3

ch7

ch0

ch1

ch3

ch0

GWRITE
G_ACT
COMP
COMP
READRES
COMP
COMP
READRES

GWRITE
G_ACT
COMP
COMP
READRES
COMP
COMP
READRES

ch0

ch1

①
② ③

GWRITE
...

ch1

…

…

Figure 6. An example of command scheduling.

H

W

Input tensor

Pre-allocated explicit padding
à Remove “Pad”

Kernel Split (MD-DP) at 50%

[Top segment(GPU)]

[Bottom segment (PIM)]

Load overlapped elements
à Remove “Slice”

Write to contiguous region
à Remove “Concat”

⨀

Figure 7. An example of memory optimization.

4.3 TVM Back-End for DRAM-PIM
TVM back-end for DRAM-PIM implements two optimization
passes to increase command-level parallelism and reduce
overheads. It also includes a code generator that generates
DRAM-PIM commands for offloaded PIM nodes.

4.3.1 DRAM-PIM Command Generator. The DRAM-
PIM back-end is designed to take transformed model graphs
as input, generate PIM commands for PIM-offloaded nodes,
and execute GPU and PIM kernels in parallel. We mark PIM-
offloaded nodes by prefixing the node names and passing
them as Relay IR attribute to trigger the DRAM back-end. We
extend the TVM execution engine to launch GPU and PIM
kernels in parallel while reusing the existing TVM mapping
for GPU nodes to cuDNN, cuBLAS, or CUTLASS library calls.

The command generator includes a command scheduling
pass to distribute PIM commands across channels to fully
utilize all PIM compute units. This prevents channels from
being idle when matrices to be placed in memory are too
small, which is often the case for 1x1 CONV layers. Our
scheduling mechanism distributes PIM commands at G_ACT
(1), READRES (2), and COMP (3) granularity as shown in Fig. 6,
which progressively increases channel-level parallelism.

4.3.2 Memory Optimizer. Splitting and pipelining nodes
require input tensors to be sliced. When the kernel width or
height is greater than one, additional input tensor elements
around the splitting edges are needed to convolve with the
kernel elements. Thus, we need an extra “Pad” operator be-
fore each input tensor. Also, after nodes are executed in the
MD-DP mode, computation results on GPU and DRAM-PIM
must be combined into a single tensor as input for subse-
quent layers. This requires an additional “Concat” operator
to join split kernels. We found that “Slice”, “Pad”, and “Con-
cat” operators incur significant data copy overheads, making
most splitting attempts futile.

254

PIMFlow: Compiler and Runtime Support for CNN Models on Processing-in-Memory... CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

0
10
20
30
40
50
60
70
80

(4096,
1024)

(4096,
2048)

(1024,
1024)

(1024,
4096)

(21632,
2048)

(2048,
2048)

(512, 256)

sp
ee

du
p

NEWTON 8 16 32 64Newton

matrix size

Figure 8. Simulator validation based on batch size sensitivity.
Therefore, we devised a memory layout optimization to

eliminate the overheads. We assume the memory layout for
CONV layers in NHWC format, and inference is done in a
single batch size. As shown in Fig. 7, slicing/concatenating
tensors in the input height dimension (𝐻) is a no-op if two
split input/output tensors are located in contiguous memory
space. Additionally, if we pre-allocate the memory space of
the size of the input tensor plus padding and initialize them
to 0, we can eliminate the “Pad” operator by writing input
data from a padding offset. Thus, during code generation,
we allocate contiguous memory space including padding for
input/output of CONV layers.

5 Methodology
We implemented ONNX graph transformation passes by
using ONNX opset version 13 [1], and extended the TVM
compiler version 0.8 (commit 7e376e2) [11] to support
DRAM-PIM as a back-end using the Bring-Your-Own-
Codegen (BYOC) interface [12, 61]. GPU kernels are based
on CUDA 11.3.1 and cuDNN 8.2 libraries. PIMFlow allows
an individual application to choose whether to enable the
PIM capability in the GPU memory. If disabled, applications
are compiled and executed to use all memory channels as
regular load/store units for GPU. The execution mode and
task size search phase is executed once per kernel prior to
compilation to decide the execution mode, and search results
are stored as a metadata log file for later compilations. We
implemented the memory optimizer by modifying codes
to lay out input matrices for cuDNN library calls and PIM
kernels so that their addresses are contiguous when split. We
plan to move the implementation to the compiler back-end
and automate the memory address generation.
Evaluated models. We evaluated the single-batch infer-
ence time of five CNN models: EfficientNetB0 (ENetB0) [57],
MnasNet [56], MobileNetV2 (MBNetV2) [51], ResNet50 [25],
and VGG16 [53]. PIM candidate layers in these models in-
clude 1x1, 3x3, 5x5, and 7x7 CONV layers and FC layers. For
pipelined execution, we used three subgraph patterns: 1x1-
DW, DW-1x1, and 1x1-DW-1x1, where DW layers are executed
on GPU while 1x1 layers are on DRAM-PIM.
GPU and DRAM-PIM simulators. We implemented a sim-
ulator for the Newton-based DRAM-PIM architecture by ex-
tending Ramulator (commit 4edcb0d) [34]. We modified the
DRAM controller to process both GPU memory commands
and PIM commands.We set the latency of the PIM commands
based on parameter descriptions in [26], and adapted them
for GDDR6 DRAM, as shown in Table 1. TVM DRAM-PIM

Table 1. DRAM configuration
Num of Ranks 1 Num of Column I/Os per row 32
Num of Banks 16 Column I/O bit width 256b
Global buffer size 4 KB Num of Multipliers per bank 16

Timing Parameters (in clock cycles)
𝑡𝐵𝐿 : 2, 𝑡𝐶𝐿 : 11, 𝑡𝑅𝑃 : 11, 𝑡𝑅𝐶𝐷 : 11, 𝑡𝐶𝐶𝐷 : 2, 𝑡𝑅𝐴𝑆 : 25

back-end interfaces with this simulator to generate PIM com-
mand traces for PIM-offloaded layers and measures the trace
execution time. We used Accel–Sim [32] (commit 000be7f)
to generate and simulate GPU traces on NVIDIA GeForce
RTX 2060 GPU. We enabled the “write-through” mode for
GPU caches, which guarantees data coherence at the mem-
ory level for PIM commands and memory accesses from
GPU.2 We used AccelWatch [30] integrated with Accel–Sim
to measure GPU energy consumption, and CACTI 7 [4] with
the energy parameters adapted from [54] to measure PIM
energy consumption.
Simulator validation. We validated our simulator using
the matrix-vector kernel benchmarks evaluated in [26]. Fig. 8
is a reproduced version of Fig. 12 in [26] on our simulator,
comparing the PIM and GPU performance with different
batch sizes. We matched software and hardware configura-
tions to the best of our knowledge; we used the HBM timing
parameters based on [26] and CUTLASS v1.3 [31] for GPU
kernels and NVIDIA Titan V GPU with 24 memory chan-
nels for GPU configurations. The experiment shows that our
simulator performs 20.4x better than GPU (batch size = 1),
which is a conservative speedup compared to 50x in [26]
but closer to 10x in follow-up research [38]. While PIM per-
formance scales consistently with matrix sizes, we found
that GPU kernels show widely varying behaviors, depend-
ing on matrix sizes and library versions. Considering the
inherently limited capacity for validation against a propri-
etary architecture, we focus on simulating a realistic version
of PIM-enabled memory and using a widely-used cuDNN
library for a fair evaluation.
Evaluated PIM offloading mechanisms.
• Baseline: GPU-only execution with a 32-channel memory.
• Newton+: The baseline Newton [26] with offloading sup-
port for CONV and FC layers (no mixed-parallel execution
support) and command scheduling for multiple channels.
• Newton++: Newton+with the PIM command optimizations.
• PIMFlow-md and PIMFlow-pl: Newton++ with mixed-
parallel execution support for MD-DP (PIMFlow-md) and
pipelining only (PIMFlow-pl).
• PIMFlow: PIMFlow with full optimizations and execution
model support as proposed in Section 4.

6 Evaluation Results
In this section, we show how much performance and energy
improvement PIMFlow can achieve by enabling CNN models
on PIM-enabled GPU memory. We also present sensitivity
2We observed a 2.8% slowdown compared to the “write-back” mode (Mo-
bileNet), which may impact offloading decisions and splitting ratios but is
tolerable considering the overall performance gain from PIM acceleration.

255

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Yongwon Shin, Juseong Park, Sungjun Cho, and Hyojin Sung

0.8
1

1.2
1.4
1.6
1.8

2

ENetB0 MBNetV2 MnasNet ResNet50 VGG16 GM

sp
ee

du
p

Newton+ Newton++ Pipeline MD-DP PIMFlow

(a) All CONV layers.

0.8
1

1.2
1.4
1.6
1.8

2

ENetB0 MBNetV2 MnasNet ResNet50 VGG16 GM

sp
ee

du
p

Newton+ Newton++ Pipeline MD-DP PIMFlow

(b) End-to-end model inference.
Figure 9. Execution time (normalized to the GPU baseline).

0.8

1.2

1.6

2

2.4

2.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s
p

e
e

d
u

p

Newton+ Newton++ MD-DP

(a) EfficientNet.

0.8

1.2

1.6

2

2.4

2.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s
p

e
e

d
u

p

4.33 3.00
4.33

3.00 3.003.00

(b)MobileNet.

0.8

1.2

1.6

2

2.4

2.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

s
p

e
e

d
u

p

3.103.10

(c)MnasNet.

0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

s
p

e
e

d
u

p

(d) ResNet50.

2.45

0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 3 4 5 6 7 8 9

s
p

e
e

d
u

p

(e) VGG16.
Figure 10. Layerwise performance breakdown for nodes executed
in the MD-DP mode (normalized to the GPU baseline).

analysis results with different memory configurations, soft-
ware parameters, and model sizes/types, to investigate the
feasibility and performance impact of our design decisions.

6.1 CNN Model Performance
We measured the inference time of five CNN models com-
piled by PIMFlow and the other offloading mechanisms on
simulated hardware configurations as listed in Section 5. For
stable results, each simulation is repeated three times.

Fig. 9 presents (1) the execution time of all PIM-candidate
CONV layers and (2) end-to-end model inference time for
all evaluated models, normalized to the GPU baseline. In
summary, PIMFlow with full MD-DP and pipelined execu-
tion support provides a 30% speedup on average for CONV
layers against the GPU baseline, while outperforming all of
the other offloading mechanisms. The performance gain is
more significant – up to 48% with ENetB0, MBNetV2, and
MnasNet than ResNet50 and VGG16 – since more compute-
intensive CONV layers in the latter models do not provide
as much speedup on DRAM-PIM as the former models. For

0 K
10 K
20 K
30 K
40 K
50 K
60 K
70 K

P 1 P 2 P 3 P 4 G 1 G 2 G 3

cy
cl

es

Pa.1 Pa.2

G.1 G.2

Pb.1 Pb.2

Pa
G

Pb

Transformed
Save

P.1 P.2

G.1

P
G

Increase

G.2

G.1

G
P

G.2

P.1 P.2

[Type 1] [Type 2] [Type 3]

PIM
GPU

Original

Type 1 Type 2 Type 3
Figure 11. Layerwise performance breakdown for pipelining can-
didate subgraphs (left bars for nodes when executed in the MD-DP
mode, right bars when pipelined).

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

ENetB0 MBNetV2 MnasNet ResNet50 VGG16 GM

no
rm

al
iz

ed

en
er

gy

Newton+ Newton++ Pipeline MD-DP PIMFlow

Figure 12. Energy consumption.

Table 2. The distribution of MD-DP splitting ratios
Split ratio to GPU (0: total offload)

0 10 20 30 40 50 60 70 80 90 100
41% 5% 6% 9% 3% 10% 5% 6% 8% 6% 0%

end-to-end inference time, ENetB0 and VGG16 gain 27% and
5% additional speedups on top of 43% and 17% for CONV
layers, respectively, by offloading FC layers to the DRAM-
PIM. Overall, the results show that compiler and runtime
support by PIMFlow can enable CNN models on the DRAM-
PIM hardware with substantial performance gain for both
FC and CONV layers without impacting the hardware.
Newton+ vs. Newton++. Newton++ outperforms Newton+ by
20% on average for all CONV layers (up to 37% forMBNetV2),
showing that optimizing PIM commands alone can boost
PIM capabilities (more details in Section 6.2).
Newton++ vs. PIMFlow-md. Comparing the layerwise and
modelwise execution times of Newton++ and PIMFlow-md
highlights the performance improvement enabled by the
MD-DP execution mode (Fig. 9 and 10). The splitting ratio
between GPU and DRAM-PIM varies depending on how
memory-intensive a layer is and how it performs on GPU.
Table 2 shows that 58% of the PIM-candidate layers are split
across GPU and DRAM-PIM and executed in parallel, while
41% fully offload to DRAM-PIM (some of the layers were
considered for pipelined execution as well, but executed
in parallel based on search results). We observed that the
MD-DP execution mode enables many layers that were not
offloading candidates for Newton++ to gain speedups with
parallel execution on GPU and DRAM-PIM (e.g., layers 4,
6, 17, and 20 in ENetB0), resulting in a 13% speedup against

256

PIMFlow: Compiler and Runtime Support for CNN Models on Processing-in-Memory... CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

0.4
0.6
0.8

1
1.2
1.4
1.6

4 8 12 16 20 24 28

sp
ee

du
p

of PIM channels

Newton+ (ENetB0) Newton++ (ENetB0) PIMFlow (ENetB0)
Newton+ (ResNet50) Newton++ (ResNet50) PIMFlow (ResNet50)

Figure 13. Performance impact by GPU/PIM memory channel
ratios (32 in total). Filled shapes indicate the best performance for
the given mechanism.

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

ENetB0 MBNetV2 MnasNet ResNet50 VGG16 GM

sp
ee

du
p

PIMFlow no GW no GB Baseline

Figure 14. PIM-command optimization sensitivity (GW for
GWRITE latency hiding and GB for multiple global buffers).

1.2
1.3
1.4
1.5

2 3 4 5

sp
ee

du
p

stages

Newton++ Pipeline PIMFlow

Figure 15. Pipeline stage granularity sensitivity.

0.8
1

1.2
1.4
1.6
1.8

ENetB0 ENetB4 ENetB6 MBNet MBNet-1.4 Mnas Mnas-1.3 Bert-1x3 Bert-1x64

sp
ee

du
p

Newton+ Newton++ Pipeline MD-DP PIMFlow

4.00
4.36
4.36
4.38
4.38

Figure 16.Model type and size sensitivity.

Newton++, on average. These are the target CONV layers
identified in Section 3 whose performance on DRAM-PIM
is not significantly better or worse than GPU. While full
PIM offloading could also make a difference for these layers,
parallel execution further reduced the critical execution path
length with minimal parallelization overhead.
PIMFlow-md vs. PIMFlow-pl. In our current implementa-
tion, the MD-DP execution mode identifies all CONV layers
except for DW as candidates while the pipelined execution
mode uses pre-defined subgraph patterns to find a limited set
of candidate layers. Their candidate layers partially overlap,
so we analyzed how PIMFlow-md and PIMFlow-pl perform
comparatively for the PIMFlow-pl patterns with a layerwise
and stagewise breakdown. Fig. 11 presents pipelined sub-
graphs that show >10% speedup or <25% slowdown with
PIMFlow-pl compared to PIMFlow-md in all evaluated mod-
els. We used three subgraph patterns for pipelining as shown
on the top of Fig. 11, and only the Type 1 pattern outperforms
the same nodes parallelized in MD-DP mode. This pattern
can effectively overlap GPU kernels (G.1 and G.2) with PIM
kernels (Pa.2 and Pb.1), while prologue and epilogue GPU
kernel latencies are too high in Type 2 and 3 patterns.
PIMFlow-md/PIMFlow-pl vs. PIMFlow. PIMFlow with full
MD-DP and pipelining support outperforms the PIMFlow-md
and PIMFlow-pl variations by 1% and 12% on average, respec-
tively. For ENetB0, MBNetV2, and MnasNet, PIMFlow-md and

PIMFlow-pl separately achieve significant speedups: 38% and
41% on average against the baseline (Fig. 9). When combined,
PIMFlow improves the inference time by 43% on average for
these models. The speedup numbers do not strictly add up
due to having common candidate layers, as described above.
For ResNet50 and VGG16with a few to zero pipelining pattern
matches, PIMFlow performs the same as PIMFlow-md.
Energy consumption. Fig. 12 shows that both Newton++
and PIMFlow consume significantly less energy than the GPU
baseline by 18% and 26%, respectively. The result aligns with
prior work that the fixed-function MAC logic in memory
requires less power for the same computation than dense
GPU cores and additionally saves power by reducing data
transfers [3, 15, 26]. Newton++ uses 17% less energy than
Newton+, as the PIM-command optimizations reduces bank
activation. The models with relatively small speedup on PIM-
Flow (Resnet50 and VGG16) show limited or negative energy
gains due to the increased GPU static power for compute-
intensive layers.

6.2 Sensitivity Study
GPU/PIM memory channel ratio. We experimented with
different ratios of GPU-only and PIM-enabled memory chan-
nels to investigate how they impact overall model perfor-
mance. Fig. 13 shows that as the number of PIM channels
increases (and the number of GPU channels decreases) in a
32-channel memory, PIMFlow consistently improves model
performance thanks to PIM acceleration, up to a certain point
(16 PIM channels), then slows down as GPU kernel perfor-
mance suffers from too few memory channels. The 16-16
channel division in our PIM-enabled GPUmemory is derived
from this experimental result. The positive impact of PIM
acceleration is weaker and the negative impact of reduced
GPU memory is more severe for Newton+ and Newton++,
especially for ResNet50 with more compute-intensive layers
than ENetB0, which reaffirms the contribution of PIMFlow
to extending the scope of PIM utilization.
PIM-command optimizations. We isolated the performan-
ce impact of two PIM-command optimizations, GWRITE
latency hiding and multiple global buffers. Fig. 14 shows
that GWRITE latency hiding provides a 9% speedup on its
own while multiple global buffers provide a 14% speedup
against Newton+. PIMFlow achieves a 22% speedup on aver-
age by combining them; thus, we see that neither optimiza-
tion absorbs or interferes with the effect of the other and
independently contributes to the performance.
Pipeline stage granularity. Increasing the number of pipe-
line stages will reduce prologue and epilogue overheads, but
increase kernel launch and communication overheads. We
examined how the number of pipeline stages may impact
performance, and found that having more than two stages
leads to larger overheads than the performance gain from
overlapped execution (Fig. 15).

257

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Yongwon Shin, Juseong Park, Sungjun Cho, and Hyojin Sung

Model type and size.We evaluated BERT [16] and scaled-
up versions of ENet, MBNetV2, and MnasNet) to see how
PIMFlow features work for DNN models of different types
and sizes. For BERT, while PIMFlow performs the same as
Newton++ for small input (1x3) as used in [26], PIMFlow
provides a 32% extra speedup over Newton++ for 1x64 input
by executing FC layers in the MD-DP mode. The PIMFlow
acceleration for the mobile CNN models decreases as the
model size increases, going down to 7% for ENetB6 against the
GPU baseline. This is because even with 1x1 CONV layers,
the arithmetic intensity and data reuse increase, favoring
GPU execution over PIM as the model size grows.

7 Discussion
Area overhead. The baseline DRAM-PIM architecture re-
ported the area overhead for PIM-related logic to be 0.19mm2

[38] per bank. Our PIM-enabled memory introduced addi-
tional area overheads for a crossbar interconnect between
channels and larger global buffers (4KB per channel). We es-
timate the area of global buffers to be 0.33mm2 based on [4],
and the area of the crossbar and long links to be 1.53mm2

in 32-channel memory referring to [63], which are around
0.72% of the GPU die area in total.
Contention at memory controller. The GPU memory con-
troller is extended to handle PIM commands too, which can
increase contention at the controller. While a PIM channel
reads activation data from GPU channels, the GPU memory
controller cannot accept GPU memory commands. We sim-
ulated this contention by interleaving Accel–Sim memory
commands with PIM command sequences to the DRAM-PIM
simulator, and the slowdown due to the contention was negli-
gible at 0.15% for MBNetV2 and 0.22% for Resnet50 compared
to no-contention cases.
Compilation overhead. Compilation time is dominated by
the hardware measurement time during the execution mode
and task size search phase, which is proportional to the num-
ber of FC and CONV layers in a model. Though profiling on
our simulators takes several hours, measurements on actual
hardware are expected to finish within several minutes.

8 Related Work
Digital Processing-in-Memory DRAM. Many researchers
have proposed PIM architectures for DL model accelera-
tion [14, 15, 20, 26, 37, 52, 60]. [15] performed matrix mul-
tiplication in a systolic-array accelerator per MAC bank,
which takes activations from Broadcast bank. [14] observed
that small batch sizes result in memory-bound matrix oper-
ations during model inference, and processed these opera-
tions near memory while handling complex memory address
mapping. [26, 38] accelerated matrix-vector multiplication
with in-memory MAC logic and global buffers, while [37]
introduced an HBM-based PIM architecture that supports
MAC and elementwise operations at the bank level. Recent
work tends to limit PIM compute capability to MAC or ele-

mentwise computations considering hardware constraints.
PIMFlow is designed with such PIM architectures in mind,
and thus it can be readily adapted to support them.
Software support for PIM hardware. To make PIM hard-
ware accessible and fully utilized, it is important to provide
software interfaces to mitigate the burden on programmers.
[43] provided compiler support to generate PIM binaries, but
required programmers to annotate programs with directives
to identify PIM computations. [22, 58] built a cost model
using profiling results and decided which computation to
offload to PIM, while [62] profiled a subset of loop iterations
to dynamically offload loops to PIM. [27, 33] implemented a
software stack for GPU-PIM systems that uses a cost-benefit
analysis of memory bandwidth consumption for offloading
decisions. [59] allowed programmers to restructure target
programs to optimize memory access patterns for PIM using
a runtime memory traffic monitor. While these efforts could
automate the offloading process, they did not proactively
transform programs to generate more offloading opportuni-
ties as PIMFlow does.
Placement and scheduling mechanisms for heterogene-
ous systems. Scheduling workloads on heterogeneous sys-
tems is an open problem with intractable complexity [8,
29, 39, 41, 46, 48, 55]. [48] proposed a way to utilize the
GPU with PIM-enabled memory. It analyzed GPU kernels
by using metrics such as memory intensity and scheduled
each kernel concurrently on both GPU and PIM cores. [41]
proposed a hierarchical task scheduler for heterogeneous
systems that divided a coarse-grained task into subtasks
and scheduled them on accelerators. On CPU-GPU hetero-
geneous systems, [29] used online profiling to reduce load
imbalance and increase parallelism for scheduled workloads
across devices.While PIMFlow shares the goal of maximizing
parallelism on heterogeneous systems with prior work, we
focus specifically on PIM-aware compiler transformations
and runtime support to maximize PIM utilization.

9 Conclusion and Future Work
This paper presented our effort to expand the scope of PIM
acceleration to CNN models, widely used as a backbone
but out of the spotlight for PIM target applications. With
the PIM-aware graph transformations, command-generating
back-end, and mixed-parallel execution runtime specifically
designed to accelerate convolutional layers on DRAM-PIM,
PIMFlow showed strong potential for an optimizing software
stack for commercial DRAM-PIM. For future work, we plan
to apply an auto-tuning approach to our execution mode
and task size search for more optimized code generation.
Acknowledgments
We thank the anonymous reviewers for their valuable feedback. This
work was supported by Institute for Information & communications
Technology Promotion (IITP) (2019-0-01906,2021-0-00871,2021-0-
00310), National Research Foundation (NRF) (2020M3H6A1084853),
and National IT Industry Promotion Agency (NIPA) (R-20210319-
010567), funded by the Korean government (MSIT).

258

PIMFlow: Compiler and Runtime Support for CNN Models on Processing-in-Memory... CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

Data-Availability Statement
The data that support the findings of this study are openly
available in Zenodo (DOI: 10.5281/zenodo.7639153) [2].

A Artifact Appendix
A.1 Abstract
Our artifact consists of four parts: (1) ONNX transformation
passes, (2) hardware measurement scripts for the execution
mode and task size search, (3) an extended TVM compiler
with DRAM-PIM back-end, and (4) GPU and DRAM-PIM
simulators. For pre-generated input data, we provide GPU
traces for the CNN models evaluated in the paper. These
traces can also be generated by using NVBit.3 We provide
modified binaries and source codes for the TVM compiler
extended with the DRAM-PIM back-end.
Artifact evaluation and testing are streamlined with a

top-level script (pimflow) that controls different features of
PIMFlowwith lower-level scripts (details in Section A.5). The
reproduction of the results in this paper can be conducted
on any platform that can run the simulators, as long as all
traces are generated and executed with the same simulator
configurations as the paper.

A.2 Artifact Check-list (Meta-information)
• Algorithm: Methods for (1) PIM-aware graph transforma-
tion passes to enable MD-DP (Multi-Device Data-Parallel)
and pipelined execution of CONV layers, (2) layer-wise
profiling of MD-DP and pipelining candidates on GPU and
DRAM-PIM, (3) dynamic-programming based algorithm
to obtain the optimal execution mode and task size, and
(4) code-generating back-end for DRAM-PIM.
• Program (Model): ENetB0, MBNetV2, MnasNet, ResNet50,
and VGG16 as provided by Torchvision4, and Toy is a small,
in-house model with three CONV layers for quick testing.
• Compilation: Modified Apache TVM compiler based on
v0.8 (commit: 7e376e2). Binaries and sources provided.
• Data set: GPU traces produced by GPGPU-Sim for the
evaluated models are included. Traces can be re-generated
by using NVBit, but the results may vary slightly due to
inherently non-deterministic behaviors of kernel codes.
• Run-time environment: Linux (Ubuntu 20.04) with
CUDA 11.3.1 and cuDNN 8 runtime for AMD64.
• Hardware: We recommend systems with NVIDIA
GeForce RTX 2080 Ti GPU for reproducing the results
in the paper. GPUs with the same architecture (Turing)
should give comparable results.
• Metrics: Model inference time (GPU kernels).
• Output: Given a CNN model, its ONNX graph trans-
formed by the PIM-aware graph transformation passes,
GPU traces generated by NVBit, and DRAM-PIM kernels
generated by TVM back-end.

• Experiments: Execution steps are described in A.5 and
README at our archive.
• Howmuch disk space required (approximately)?: Up
to 65GB, including five model traces (15GB for TVM, Accel-
SIM, GPGPU-Sim, Ramulator, and PIMFlow installation,
and 10GB trace per model).
• How much time is needed to prepare workflow (ap-
proximately)?: Re-generating GPU traces will take up
to 12 hours per model on systems with 8 NVIDIA GeForce
RTX 2080 Ti GPUs.
• How much time is needed to complete experiments
(approximately)?: Up to 8 hours of simulation time per
model on Intel Xeon Gold 6248R CPU.
• Publicly available?: Yes.
• Workflow framework used?: No.
• Archived (provide DOI)?: https://doi.org/10.5281/
zenodo.7376801

A.3 Description
A.3.1 How Delivered. The PIMFlow compiler (ONNX
passes and TVM back-end), GPU and DRAM-PIM simula-
tors, and hardware measurement engine are available at the
following link: https://doi.org/10.5281/zenodo.7376801 (DOI:
10.5281/zenodo.7376801). We also provide a GitHub reposi-
tory (https://github.com/yongwonshin/PIMFlow).

A.3.2 Hardware Dependencies. We recommend systems
with NVIDIA GeForce RTX 2080 Ti GPU for GPU trace gen-
eration. GPUwith the same architecture (Turing) should give
similar results. There is no additional hardware dependency
for simulation execution (Accel-Sim and Ramulator) except
for the executable platform requirement in their original
versions.

A.3.3 Software Dependencies. We implemented and
tested our codes on the Ubuntu 20.04 x86-64 system with
CUDA 11.3.1 and cuDNN 8 library. Additional software de-
pendencies include minimal prerequisites on Ubuntu for
TVM, Accel-Sim, GPGPU-Sim, and Ramulator. The min-
imal versions required are Python v3.8, PyTorch version
1.11.0+cu113, Torchvision version 0.12.0+cu113, LLVM 13
including Clang, and ONNX operator set version 13. We
strongly recommend using a docker image, “yongwonsh-
in/pimflow:v0.1” or a later version, for installation. The
docker image includes all software dependencies and prereq-
uisites for experiments.

A.4 Installation
A.4.1 Docker Installation. docker and nvidia-container-
docker packages are required in order to run our docker
image. The following command will activate the image and
install PIMFlow.

3https://github.com/NVlabs/NVBit
4https://pytorch.org/vision/stable/models.html

259

https://doi.org/10.5281/zenodo.7376801
https://doi.org/10.5281/zenodo.7376801
https://doi.org/10.5281/zenodo.7376801
https://github.com/yongwonshin/PIMFlow

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Yongwon Shin, Juseong Park, Sungjun Cho, and Hyojin Sung

execute docker container
docker run -it --gpus=all --rm \

yongwonshin/pimflow:v0.1
install prerequisites
./install.sh

A.4.2 Local Installation (Zenodo). The Zenodo archive
provides Git patch files for TVM, Accel-Sim, GPGPUSIM,
and Ramulator, and a compressed PIMFlow repository that
includes all execution and profiling scripts, ONNX transfor-
mation passes, and GPU traces. Git patch files can be applied
to each repository by using the following command:
from commit: 000be7f
git am PIMFlow_accel-sim-framework.patch
from commit: 13c6711
git am PIMFlow_gpgpu-sim_distribution.patch
from commit: 4edcb0d
git am PIMFlow_ramulator.patch
from commit: 7e376e2
git am PIMFlow_tvm.patch

The PIMFlow repository can be extracted by using the fol-
lowing command:
unzip PIMFlow_b30b0b8.zip

We also included DockerFile for manual docker build. The
README at the archive has detailed installation instructions.

A.4.3 Local Installation (GitHub). The following four
GitHub repositories must be cloned in order to compile and
run PIMFlow:
https://github.com/yongwonshin/PIMFlow_tvm.git
https://github.com/yongwonshin/PIMFlow_accel-sim-
framework.git
https://github.com/yongwonshin/PIMFlow_gpgpu-sim
_distribution.git
https://github.com/yongwonshin/PIMFlow_ramulator.git
https://github.com/yongwonshin/PIMFlow.git

An installation guide is included in each repository, and an
overall environment setup guide for evaluation is provided
by the README file in the PIMFlow GitHub repository.

A.5 Experiment Workflow
The overall experiment workflow consists of three steps: can-
didate profiling, candidate search and selection, and end-to-
end execution. You can jump to Step 2 if you reuse previously
profiled data, and to Step 3 if you have already computed
the optimal graph. We use the Toy network for the following
installation sequence. The <net> option can be efficientnet-
v1-b0, mobilenet-v2, mnasnet-1.0, resnet-50, or vgg-16.
Step 1: Profile each CONV layer using MD-DP or pipelining
transformation pass.
./pimflow -m=profile -t=split -n=<net>
./pimflow -m=profile -t=pipeline -n=<net>

Step 2: Compute the optimal ONNX graph based on the
result from Step 1.
./pimflow -m=solve -n=<net>

Step 3: Execute the transformedmodel. Use the --gpu_only
option for GPU execution time.

./pimflow -m=run --gpu_only -n=<net>

./pimflow -m=run -n=<net>

A.6 Evaluation and Expected Result
After steps 1 and 2, the resulting ONNX graph and
GPU/DRAM-PIM traces for the graph are created in PIMFlow.
Also, profiling results are saved in PIMFlow/layerwise and
PIMFlow/pipeline for MD-DP and pipelined executions,
respectively. Executing the following command will run the
traces and generate an execution time graph for all PIM-
candidate CONV layers with four offloading mechanisms
(Fig. 17). The <policy> option can be Newton+, Newton++,
Pipeline, MDDP, or PIMFlow.
Convolution-only result
./pimflow -m=stat --conv_only -n=<net>
End-to-end result
./pimflow -m=stat -n=<net> --policy=<policy>

Figure 17. Example output graph (normalized to the GPU baseline).

A.7 Experiment Customization
Profiling scripts are customizable with MD-DP split ratios
and pipeline patterns that are different from what is used in
the paper. The number of memory channels used for DRAM-
PIM hardware can also be customizable for hardware design
space exploration. The main execution script can take as
input other CNN/DNN models that were not evaluated in
the paper and optimize them with PIMFlow.

References
[1] 2019. Open Neural Network Exchange. https://onnx.ai/.
[2] 2022. PIMFlow: Compiler and Runtime Support for CNN Models

on Processing-in-Memory DRAM. https://doi.org/10.5281/zenodo.
7639153.

[3] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015.
PIM-enabled instructions: A low-overhead, locality-aware processing-
in-memory architecture. In 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on Computer Architecture (ISCA). 336–348. https:
//doi.org/10.1145/2749469.2750385

[4] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar,
Ali Shafiee, and Vaishnav Srinivas. 2017. CACTI 7: New Tools for
Interconnect Exploration in Innovative Off-Chip Memories. ACM
Trans. Archit. Code Optim. 14, 2, Article 14 (jun 2017), 25 pages.
https://doi.org/10.1145/3085572

[5] Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi
Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu,
and Onur Mutlu. 2021. Google Neural Network Models for
Edge Devices: Analyzing and Mitigating Machine Learning In-
ference Bottlenecks. In 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT). 159–172.
https://doi.org/10.1109/PACT52795.2021.00019

[6] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Ku-
usela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu.

260

https://onnx.ai/
https://doi.org/10.5281/zenodo.7639153
https://doi.org/10.5281/zenodo.7639153
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1145/3085572
https://doi.org/10.1109/PACT52795.2021.00019

PIMFlow: Compiler and Runtime Support for CNN Models on Processing-in-Memory... CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

2018. Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). As-
sociation for Computing Machinery, New York, NY, USA, 316–331.
https://doi.org/10.1145/3173162.3173177

[7] E. O. Brigham and R. E. Morrow. 1967. The fast Fourier transform.
IEEE Spectrum 4, 12 (1967), 63–70. https://doi.org/10.1109/MSPEC.
1967.5217220

[8] Louis-Claude Canon, Loris Marchal, Bertrand Simon, and Frédéric
Vivien. 2020. Online Scheduling of Task Graphs on Heterogeneous
Platforms. IEEE Transactions on Parallel and Distributed Systems 31, 3
(2020), 721–732. https://doi.org/10.1109/TPDS.2019.2942909

[9] Kevin K. Chang. 2017. Understanding and Improving the Latency of
DRAM-Based Memory Systems. https://doi.org/10.48550/ARXIV.1712.
08304

[10] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose,
Kevin Hsieh, Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira
Khan, and Onur Mutlu. 2016. Understanding Latency Variation in
Modern DRAM Chips: Experimental Characterization, Analysis, and
Optimization. SIGMETRICS Perform. Eval. Rev. 44, 1 (jun 2016), 323–336.
https://doi.org/10.1145/2964791.2901453

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation.

[12] Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai,
Jared Roesch, Elliott Delaye, Vin Sharma, and Yida Wang. 2021. Bring
Your Own Codegen to Deep Learning Compiler. CoRR abs/2105.03215
(2021).

[13] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn:
Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759
(2014).

[14] Benjamin Y. Cho, Jeageun Jung, and Mattan Erez. 2021. Accelerat-
ing Bandwidth-Bound Deep Learning Inference with Main-Memory
Accelerators. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (St. Louis,
Missouri) (SC ’21). Association for Computing Machinery, New York,
NY, USA, Article 44, 14 pages.

[15] Seunghwan Cho, Haerang Choi, Eunhyeok Park, Hyunsung Shin,
and Sungjoo Yoo. 2020. McDRAM v2: In-Dynamic Random Ac-
cess Memory Systolic Array Accelerator to Address the Large Model
Problem in Deep Neural Networks on the Edge. IEEE Access (2020).
https://doi.org/10.1109/ACCESS.2020.3011265

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. CoRR (2018). arXiv:1810.04805 http:
//arxiv.org/abs/1810.04805

[17] JeffDraper, Jacqueline Chame,MaryHall, Craig Steele, Tim Barrett, Jeff
LaCoss, John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang,
Ihn Kim, and Gokhan Daglikoca. 2002. The Architecture of the DIVA
Processing-in-Memory Chip. https://doi.org/10.1145/514191.514197

[18] M. Gokhale, B. Holmes, and K. Iobst. 1995. Processing in mem-
ory: the Terasys massively parallel PIM array. Computer (1995).
https://doi.org/10.1109/2.375174

[19] Gene H Golub and Charles F Van Loan. 2013. Matrix computations.
JHU press.

[20] Peng Gu, Xinfeng Xie, Shuangchen Li, Dimin Niu, Hongzhong Zheng,
Krishna T Malladi, and Yuan Xie. 2020. DLUX: A LUT-based near-
bank accelerator for data center deep learning training workloads.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 40, 8 (2020), 1586–1599.

[21] Daniel Hackenberg, Guido Juckeland, and Holger Brunst. 2012. Per-
formance analysis of multi-level parallelism: inter-node, intra-node
and hardware accelerators. Concurrency and Computation: Practice
and Experience 24, 1 (2012), 62–72.

[22] Ramyad Hadidi, Lifeng Nai, Hyojong Kim, and Hyesoon Kim. 2017.
CAIRO: A compiler-assisted technique for enabling instruction-level

offloading of processing-in-memory. ACM Transactions on Architecture
and Code Optimization (TACO) 14, 4 (2017), 1–25.

[23] Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Dinis Fer-
reira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata
Ghose, Juan Gómez-Luna, and Onur Mutlu. 2021. SIMDRAM: A Frame-
work for Bit-Serial SIMD Processing Using DRAM. In Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS ’21). Association for Computing Machinery, New York, NY, USA,
329–345. https://doi.org/10.1145/3445814.3446749

[24] Hyungkyu Ham, Hyunuk Cho, Minjae Kim, Jueon Park, Jeongmin
Hong, Hyojin Sung, Eunhyeok Park, Euicheol Lim, and Gwangsun
Kim. 2021. Near-Data Processing in Memory Expander for DNN Ac-
celeration on GPUs. IEEE Computer Architecture Letters 20, 2 (2021),
171–174. https://doi.org/10.1109/LCA.2021.3126450

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016.
Deep Residual Learning for Image Recognition. In CVPR. https:
//doi.org/10.1109/CVPR.2016.90

[26] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim,
Il Park, Mithuna Thottethodi, and T. N. Vijaykumar. 2020. Newton: A
DRAM-maker’s Accelerator-in-Memory (AiM) Architecture for Ma-
chine Learning. In Proc. ACM/IEEE 48th Annu. Int. Symp. Microarchit.
https://doi.org/10.1109/MICRO50266.2020.00040

[27] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,
Mike O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W.
Keckler. 2016. Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent near-Data Processing in GPU Systems. In
Proceedings of the 43rd International Symposium on Computer Archi-
tecture (Seoul, Republic of Korea) (ISCA ’16). IEEE Press, 204–216.
https://doi.org/10.1109/ISCA.2016.27

[28] Yuan-Ting Hu, Jia-Bin Huang, and Alexander Schwing. 2017. Maskrnn:
Instance level video object segmentation. Advances in neural informa-
tion processing systems 30 (2017).

[29] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Chunling Hu,
Brian T. Lewis, and Keshav Pingali. 2014. Adaptive heterogeneous
scheduling for integrated GPUs. In 2014 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT). 151–162.
https://doi.org/10.1145/2628071.2628088

[30] Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Junrui Pan, Amogh
Manjunath, Timothy G. Rogers, Tor M. Aamodt, and Nikos Hardav-
ellas. 2021. AccelWattch: A Power Modeling Framework for Mod-
ern GPUs. In MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture (Virtual Event, Greece) (MICRO ’21). As-
sociation for Computing Machinery, New York, NY, USA, 738–753.
https://doi.org/10.1145/3466752.3480063

[31] Andrew Kerr, Haicheng Wu, Manish Gupta, Dustyn Blasig, Pradeep
Ramini, Duane Merrill, Aniket Shivam, Piotr Majcher, Paul Springer,
Markus Hohnerbach, Jin Wang, and Matt Nicely. 2022. CUTLASS.
https://github.com/NVIDIA/cutlass

[32] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G.
Rogers. 2020. Accel-Sim: An Extensible Simulation Framework for
Validated GPU Modeling. In ISCA. https://doi.org/10.1109/ISCA45697.
2020.00047

[33] Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin
Hsieh. 2017. Toward Standardized Near-Data Processing with Un-
restricted Data Placement for GPUs. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis (Denver, Colorado) (SC ’17). Association for Com-
puting Machinery, New York, NY, USA, Article 24, 12 pages. https:
//doi.org/10.1145/3126908.3126965

[34] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast
and Extensible DRAM Simulator. IEEE Comput. Archit. Lett. (2016).
https://doi.org/10.1109/LCA.2015.2414456

[35] Andrew Lavin and Scott Gray. 2015. Fast Algorithms for Convolutional
Neural Networks. https://doi.org/10.48550/ARXIV.1509.09308

[36] Sunjung Lee, Jaewan Choi, Wonkyung Jung, Byeongho Kim, Jaehyun
Park, Hweesoo Kim, and Jung Ho Ahn. 2022. MVP: An Efficient CNN
Accelerator with Matrix, Vector, and Processing-Near-Memory Units.
ACM Trans. Des. Autom. Electron. Syst. 27, 5, Article 42 (jun 2022),
25 pages. https://doi.org/10.1145/3497745

[37] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee,

261

https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1109/MSPEC.1967.5217220
https://doi.org/10.1109/MSPEC.1967.5217220
https://doi.org/10.1109/TPDS.2019.2942909
https://doi.org/10.48550/ARXIV.1712.08304
https://doi.org/10.48550/ARXIV.1712.08304
https://doi.org/10.1145/2964791.2901453
https://doi.org/10.1109/ACCESS.2020.3011265
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/514191.514197
https://doi.org/10.1109/2.375174
https://doi.org/10.1145/3445814.3446749
https://doi.org/10.1109/LCA.2021.3126450
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/MICRO50266.2020.00040
https://doi.org/10.1109/ISCA.2016.27
https://doi.org/10.1145/2628071.2628088
https://doi.org/10.1145/3466752.3480063
https://github.com/NVIDIA/cutlass
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1145/3126908.3126965
https://doi.org/10.1145/3126908.3126965
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.48550/ARXIV.1509.09308
https://doi.org/10.1145/3497745

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Yongwon Shin, Juseong Park, Sungjun Cho, and Hyojin Sung

Seungwoo Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyun-
sung Shin, Jinhyun Kim, O Seongil, Anand Iyer, David Wang, Kyomin
Sohn, and Nam Sung Kim. 2021. Hardware Architecture and Software
Stack for PIM Based on Commercial DRAM Technology : Industrial
Product. In ISCA. https://doi.org/10.1109/ISCA52012.2021.00013

[38] Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gimoon
Hong, Dongyoon Ka, Kyudong Hwang, Jeongje Park, Kyeongpil Kang,
Jungyeon Kim, Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Korni-
jcuk Vladimir, Woojae Shin, Jongsoon Won, Minkyu Lee, Hyunha Joo,
Haerang Choi, Jaewook Lee, Donguc Ko, Younggun Jun, Keewon Cho,
Ilwoong Kim, Choungki Song, Chunseok Jeong, Daehan Kwon, Jieun
Jang, Il Park, Junhyun Chun, and Joohwan Cho. 2022. A 1ynm 1.25V
8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting
1TFLOPS MAC Operation and Various Activation Functions for Deep-
Learning Applications. In Proc. IEEE Int. Solid-State Circuits Conf.

[39] Zhe Ma, Francky Catthoor, and Johan Vounckx. 2005. Hierarchical
Task Scheduler for Interleaving Subtasks on Heterogeneous Multi-
processor Platforms. In Proceedings of the 2005 Asia and South Pacific
Design Automation Conference (Shanghai, China) (ASP-DAC ’05). As-
sociation for Computing Machinery, New York, NY, USA, 952–955.
https://doi.org/10.1145/1120725.1120765

[40] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-
Vision Package of Torch. In Proceedings of the 18th ACM Interna-
tional Conference on Multimedia (Firenze, Italy) (MM ’10). Associ-
ation for Computing Machinery, New York, NY, USA, 1485–1488.
https://doi.org/10.1145/1873951.1874254

[41] Narasinga Rao Miniskar, Frank Liu, Aaron R. Young, Dwaipayan
Chakraborty, and Jeffrey S. Vetter. 2021. A Hierarchical Task Scheduler
for Heterogeneous Computing. In High Performance Computing: 36th
International Conference, ISC High Performance 2021, Virtual Event,
June 24 – July 2, 2021, Proceedings. Springer-Verlag, Berlin, Heidelberg,
57–76. https://doi.org/10.1007/978-3-030-78713-4_4

[42] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C.-Y.
Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox,
D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Ja-
cobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K. O’Brien, M. Ohmacht,
Y. Park, D. A. Prener, B. S. Rosenburg, K. D. Ryu, O. Sallenave, M. J.
Serrano, P. D. M. Siegl, K. Sugavanam, and Z. Sura. 2015. Active Mem-
ory Cube: A processing-in-memory architecture for exascale systems.
IBM Journal of Research and Development 59, 2/3 (2015), 17:1–17:14.
https://doi.org/10.1147/JRD.2015.2409732

[43] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C.-Y.
Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox,
D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Ja-
cobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K. O’Brien, M. Ohmacht,
Y. Park, D. A. Prener, B. S. Rosenburg, K. D. Ryu, O. Sallenave, M. J.
Serrano, P. D. M. Siegl, K. Sugavanam, and Z. Sura. 2015. Active Mem-
ory Cube: A processing-in-memory architecture for exascale systems.
IBM Journal of Research and Development 59, 2/3 (2015), 17:1–17:14.
https://doi.org/10.1147/JRD.2015.2409732

[44] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and
Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. CoRR (2019).
arXiv:1906.00091 http://arxiv.org/abs/1906.00091

[45] Ataberk Olgun, Juan Gómez Luna, Konstantinos Kanellopoulos,
Behzad Salami, Hasan Hassan, Oğuz Ergin, and Onur Mutlu.
2021. PiDRAM: A Holistic End-to-end FPGA-based Framework for
Processing-in-DRAM. arXiv:2111.00082 [cs.AR]

[46] Michael Orr and Oliver Sinnen. 2021. Optimal task scheduling for
partially heterogeneous systems. Parallel Comput. 107 (2021), 102815.
https://doi.org/10.1016/j.parco.2021.102815

[47] Alexandros Papakonstantinou, Yun Liang, John A. Stratton, Karthik
Gururaj, Deming Chen, Wen-Mei W. Hwu, and Jason Cong. 2011.
Multilevel Granularity Parallelism Synthesis on FPGAs. In 2011 IEEE
19th Annual International Symposium on Field-Programmable Custom
Computing Machines. 178–185. https://doi.org/10.1109/FCCM.2011.29

[48] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das. 2016.
Scheduling techniques for GPU architectures with processing-in-
memory capabilities. In 2016 International Conference on Parallel Ar-
chitecture and Compilation Techniques (PACT). 31–44. https://doi.org/
10.1145/2967938.2967940

[49] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016.
You only look once: Unified, real-time object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
779–788.

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net:
Convolutional networks for biomedical image segmentation. In Inter-
national Conference on Medical image computing and computer-assisted
intervention. Springer, 234–241.

[51] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. In CVPR. https://doi.org/10.1109/CVPR.2018.00474

[52] Hyunsung Shin, Dongyoung Kim, Eunhyeok Park, Sungho Park,
Yongsik Park, and Sungjoo Yoo. 2018. McDRAM: Low Latency and
Energy-Efficient Matrix Computations in DRAM. IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst. (2018). https://doi.org/10.1109/TCAD.
2018.2857044

[53] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. https:
//doi.org/10.48550/ARXIV.1409.1556

[54] Kyle Spafford, Jeremy Meredith, and Jeffrey Vetter. 2010. Maestro:
Data Orchestration and Tuning for OpenCL Devices. In Euro-Par 2010 -
Parallel Processing, Pasqua D’Ambra, Mario Guarracino, and Domenico
Talia (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 275–286.

[55] Jaspar Subhlok and Gary Vondran. 1996. Optimal Latency-Throughput
Tradeoffs for Data Parallel Pipelines. In Proceedings of the Eighth An-
nual ACM Symposium on Parallel Algorithms and Architectures (Padua,
Italy) (SPAA ’96). Association for Computing Machinery, New York,
NY, USA, 62–71. https://doi.org/10.1145/237502.237508

[56] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V. Le. 2019. MnasNet: Platform-
Aware Neural Architecture Search for Mobile. In CVPR. https:
//doi.org/10.1109/CVPR.2019.00293

[57] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks. CoRR (2019).
arXiv:1905.11946 http://arxiv.org/abs/1905.11946

[58] Yizhou Wei, Minxuan Zhou, Sihang Liu, Korakit Seemakhupt, Tajana
Rosing, and Samira Khan. 2022. PIMProf: An Automated Program Pro-
filer for Processing-in-Memory Offloading Decisions. In 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 855–860.
https://doi.org/10.23919/DATE54114.2022.9774560

[59] Yudong Wu, Mingyao Shen, Yi-Hui Chen, and Yuanyuan Zhou. 2020.
Tuning applications for efficient GPU offloading to in-memory pro-
cessing. In Proceedings of the 34th ACM International Conference on
Supercomputing. 1–12.

[60] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling
Liang, Xing Hu, and Yuan Xie. 2021. Spacea: Sparse matrix vector
multiplication on processing-in-memory accelerator. In 2021 IEEE In-
ternational Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 570–583.

[61] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen,
and Yibo Zhu. 2022. Bolt: Bridging the Gap between Auto-
tuners and Hardware-native Performance. In Proceedings of Ma-
chine Learning and Systems, D. Marculescu, Y. Chi, and C. Wu
(Eds.), Vol. 4. 204–216. https://proceedings.mlsys.org/paper/2022/
file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf

[62] Liang Yan, Mingzhe Zhang, Rujia Wang, Xiaoming Chen, Xingqi
Zou, Xiaoyang Lu, Yinhe Han, and Xian-He Sun. 2021. CoPIM: A
Concurrency-aware PIM Workload Offloading Architecture for Graph
Applications. In 2021 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED). 1–6. https://doi.org/10.1109/
ISLPED52811.2021.9502483

[63] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. 2020. Selective Repli-
cation in Memory-Side GPU Caches. In 2020 53rd Annual IEEE/ACM
International Symposium onMicroarchitecture (MICRO). 967–980. https:
//doi.org/10.1109/MICRO50266.2020.00082

262

https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1145/1120725.1120765
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1007/978-3-030-78713-4_4
https://doi.org/10.1147/JRD.2015.2409732
https://doi.org/10.1147/JRD.2015.2409732
https://arxiv.org/abs/1906.00091
http://arxiv.org/abs/1906.00091
https://arxiv.org/abs/2111.00082
https://doi.org/10.1016/j.parco.2021.102815
https://doi.org/10.1109/FCCM.2011.29
https://doi.org/10.1145/2967938.2967940
https://doi.org/10.1145/2967938.2967940
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/TCAD.2018.2857044
https://doi.org/10.1109/TCAD.2018.2857044
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1145/237502.237508
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://doi.org/10.23919/DATE54114.2022.9774560
https://proceedings.mlsys.org/paper/2022/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf
https://doi.org/10.1109/ISLPED52811.2021.9502483
https://doi.org/10.1109/ISLPED52811.2021.9502483
https://doi.org/10.1109/MICRO50266.2020.00082
https://doi.org/10.1109/MICRO50266.2020.00082

	Abstract
	1 Introduction
	2 Background
	2.1 Digital DRAM-PIM Architecture
	2.2 Convolution Operation and Implementation

	3 Preliminary Analysis
	4 Design and Implementation
	4.1 PIM-Enabled GPU Memory
	4.2 PIMFlow Compiler and Runtime Support
	4.3 TVM Back-End for DRAM-PIM

	5 Methodology
	6 Evaluation Results
	6.1 CNN Model Performance
	6.2 Sensitivity Study

	7 Discussion
	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization

	References

